HIGH-TEMPERATURE TECHNOLOGY

Components made of FRIALIT®-DEGUSSIT® High-Performance Ceramics

www.friatec.com/ceramics
High-purity ceramic materials and excellent manufacturing quality provide exceptional corrosion resistance and outstanding shape stability of our products – even at maximum temperatures. Our success is based on a combination of these properties allowing higher product functionality, process safety and enhanced service life. Thus, FRIALIT-DEGUSSIT High-Performance Ceramics contribute towards outstanding economic customer benefits.

Our experts constantly develop new and customised ceramic solutions and products in collaboration with our market partners.

Components made of FRIALIT-DEGUSSIT High-Performance Ceramics are characterised by properties such as:

- Extreme resistance to heat, corrosion and high electrical voltage
- High dimensional stability and resistance to wear

DEGUSSIT materials have been specially developed for use in high-temperature technology. They are specially convincing when exposed to combined stress from high temperatures and corrosive atmospheres. Our customers have been using our products for decades and their experience speaks for itself.
More than 150 years’ experience in ceramic manufacturing
FRIALIT®-DEGUSSIT®
HIGH-TEMPERATURE TECHNOLOGY
TUBES AND CAPILLARIES

Tubes made of DEGUSSIT ceramic such as protection tubes, firing or guide tubes have been used successfully in different applications for many years. They are increasingly used in many fields of application because of their outstanding material properties and numerous feasible geometries.

TUBES
The DEGUSSIT standard programme comprises delicate thin insulation tubes with outer diameters of up to 0.5 mm and large tubes with outer diameters of up to 170 mm. Individual dimensions are adapted to customer requirements.

TUBES ONE END CLOSED
DEGUSSIT tubes are also available with one end closed. The technology used to close the tubes guarantees constant wall thicknesses in this area. The tubes can be fitted with a flange for easy installation in customer applications.

CAPILLARIES
Round and oval multi-bore tubes belong to our standard range of extruded products. Diameter dimensions usually range from 0.2 to 1.6 mm and can be manufactured with different bore quantities.
For decades, FRIATEC has been supplying key components made of DEGUSSIT oxide ceramics to obtain exact and reproducible temperature measurement. The highly resistant ceramic tubes protect measuring equipment from ambient conditions thus enhancing service life.

THERMOCOUPLE PROTECTION TUBES

Protection tubes made of DEGUSSIT oxide ceramics ensure temperature measurement at extreme ambient conditions during high-temperature processes. Thermocouple protection tubes must meet the highest requirements. DEGUSSIT protection tubes show excellent dimensional stability at temperatures >1,800°C because of their purity and homogeneous microstructure.

Exceptional corrosion resistance allows them to be used under extremely difficult conditions. The material’s electrical insulating capacity and good thermal conductivity prevent measurement errors due to thermal loss thus allowing high measuring accuracy. The manufacturing method guarantees a constant wall thickness in the closed tube end and ensures the best possible response of measuring systems.
CERAMIC CAPILLARIES

As well as tubes with one end closed, ceramic capillaries are also of particular importance for measuring and controlling processes. Different measuring wires must be separated and electrically isolated from each other to guide them to the point of measurement. This requires very thin channels and thin wall thicknesses. Our excellent manufacturing capabilities create sophisticated components that meet any electrical and mechanical requirement even in confined spaces.

The low SiO₂ content of 0.01% reduces the oxidation of platinum in noble metal thermocouples to a minimum and prevents early corrosion.

FIELDS OF APPLICATION

- Glass industry
- Semi-conductor industry
- Chemical and process technology
- Heat treatment units
- Metallurgy

Highly resistant to temperature and corrosion, high dimensional stability
FRIALIT®-DEGUSSIT®
HIGH-TEMPERATURE TECHNOLOGY
OXYGEN MEASUREMENT

Yttria-stabilised zirconia has been successfully established in the field of high-temperature technology for many years. It was specially developed for the high-temperature lambda probe. Outstanding resistance to temperatures up to 1,700°C and excellent surface qualities open up new applications in high-temperature technology.

OXYGEN MEASUREMENT

Partially stabilised zirconia displays oxygen ion conductivity from 400°C. Analysis technology uses this specific physical property to determine the oxygen content of gases. DEGUSSIT FZY is used as separating layer between the test and reference gases. Ions travel from higher to lower potential from one side of the ceramic to the other depending on the oxygen content. This ion surplus i.e. electrical voltage delivers the signal to measure the oxygen content. DEGUSSIT FZY has rapid response times at constant measuring signals with temperatures up to 1,500°C.

AREAS OF APPLICATION OF OXYGEN SENSORS

Only suitable setting of welding atmospheres allows the perfect welding seam under protective gas. Industrial welding monitors the protective gas atmosphere. Hardening, annealing or surface treatment require precise control of furnace atmospheres and oxygen measurement is important. Redox processes in diffusion processes, metal melting and biotechnological processes also require this type of analysis technology. Ham, vegetables or potato crisps - requirements imposed on the atmosphere in food packaging always depend on
OTHER AREAS OF APPLICATION OF DEGUSSIT FZY

The particularly fine surface structure and temperature resistance up to 1,700°C of DEGUSSIT FZY are impressive. Low adhesion tendency efficiently reduces sticking of reagents in crucibles, plates or tubes. The material is used successfully particularly when growing crystal in research establishments.

DEGUSSIT FZY is characterised by low adhesion tendency and outstanding resistance to temperature.
FRIALIT®-DEGUSSIT®
HIGH-TEMPERATURE TECHNOLOGY
GLASS INDUSTRY

Materials DEGUSSIT AL23 and DEGUSSIT AL24 show their strength in thermal-corrosive atmospheres of molten glass. A variety of customised precision components essentially helps manufacture and shape glass and its final products. Their resistance to high temperatures and corrosion allow the components to achieve long service lives in demanding applications.
DEGUSSIT components are used at different stages in the manufacturing process of glass. Tubes made of DEGUSSIT ceramic are mounted in thermocouples (see pages 06+07) and bubbling systems during the first production step i.e. the melting process. Bubbling is used in glass melt tanks to provide efficient process design. Air is blown through the bubble tubes from the base into the melting tank. A current develops in the melt accelerating the homogenisation of glass. The bores inside the bubble tubes have a very small diameter eliminating any possibility of infiltration or cooling of the glass melt inside the ceramic tube. DEGUSSIT crucibles and annealing boxes are used for developing and manufacturing special glasses. The high-purity crucibles with dense surfaces withstand aggressive glass melts.

DEGUSSIT ceramics such as holders, shape rollers and glow prisms allow the shaping of delicate glass components. The interaction of properties such as high-temperature resistance, corrosion resistance and dielectric strength contributes specifically towards optimising manufacturing processes.
High-purity FRIALIT-DEGUSSIT materials allow constant and accurate measuring results in research & development and industrial process control especially through chemically neutral behaviour in contact with samples. Just one versatile material can be used for a wide range of temperatures and applications.
Safe measuring results at maximum temperatures

DILATOMETRY

Dilatometry is used for high-precision measurement of temperature-sensitive dimensional changes in solids, melts, powders or pastes. Using a push rod and displacement sensor, the horizontal dilatometer measuring system evaluates the thermal expansion of the test material. Sample holders made of DEGUSSIT AL23/AL24 ensure highest precision, reproducibility and long-term stability at temperatures up to 1950°C.

THERMOGRAVIMETRY

Thermogravimetry determines mass changes in samples over a defined temperature and time range. The mass change can result from different physical processes (e.g. vaporisation) or chemical processes such as reduction or oxidation. The DEGUSSIT sample holder is connected to a microbalance that records mass changes precisely while the test sample is exposed to heat. DEGUSSIT AL23 is an inert material and resistant to temperatures up to 1950°C ensuring accurate measurements for this procedure.

DIFFERENTIAL THERMAL ANALYSIS

Differential thermal analysis is a comparative measurement using the characteristic energy transformation during phase transitions as a basis for measurements. The test and reference samples are exposed to constant energy supply in two symmetrical measuring chambers. Crucibles made of DEGUSSIT AL23 do not react chemically with the sample material thus ensuring precise measurement. High thermal conductivity of DEGUSSIT materials improves sensitivity towards minimal temperature changes.
Excellent temperature and corrosion resistance as well as mechanical strength make FRIALIT-DEGUSSIT oxide ceramics true all-rounders. The all-purpose material dispenses with an annoying variety of materials in the laboratory. Easy storage of testing equipment allows clear structuring of the laboratory and helps reduce sources of errors such as mix-up of materials.

Source: Waldner Laboreinrichtungen GmbH & Co. KG
FRIALIT-DEGUSSIT oxide ceramics are also convincing when preparing samples for raw materials analysis and materials analysis. The use of pure raw materials and decades of experience ensure process safety in accordance with industrial standards for temperatures up to 1,950°C. The DEGUSSIT product range comprises a variety of annealing boxes, boats and crucibles in different geometries and materials used for annealing and melting processes. The crucibles are available cylindrical, conical or as cylindrical crucibles with round base. We are pleased to implement other dimensions and geometries according to your specific requirements.

The dense surface of DEGUSSIT oxide ceramics is highly resistant to particularly aggressive melts. The low SiO₂ content of DEGUSSIT materials helps produce the widely recognised and impressive corrosion resistance significantly enhancing the service time of crucibles (see also Chapter “Corrosion resistance”).
Because of their good corrosion resistance and shape stability, plates made of FRIALIT-DEGUSSIT High-Performance Ceramics are used as sintering plates or crucible covers in annealing and melting processes at high temperatures.

Universities and research institutes often use simple plate geometries. Specially designed products can greatly facilitate the manufacturing process in industrial plants.

Slide blocks made of DEGUSSIT AL24 are ideally suited to extreme high-temperature processes in oxidising and reducing atmospheres up to 1,950°C. They are used in electrically operated or gas-fired pusher furnaces and have best sliding properties and good hot bending strength that allow economic and reproducible production. Extensive manufacturing options are available for the production of high-precision slide blocks.
GUIDE TUBES FOR HEATING ELEMENTS

The efficiency of electrically operated furnaces is directly related to the condition of the heating element wires. To guarantee the highest possible service life for these elements, many furnace constructors use alumina support tubes that allow exact positioning and ensure the distance between the coils. Standard tubes or tubes with specially trimmed threads can be used.

INSULATION BEADS

In furnace construction, insulation beads made of DEGUSSIT AL23 are used to separate wire end connections from loose wires. Stringing the beads together keeps the wire flexible. The DEGUSSIT standard range comprises insulation beads with interior diameters from 1 to 5 mm.

FIELDS OF APPLICATION

FRIALIT-DEGUSSIT supplies a variety of products used in different fields of furnace construction. In addition to the specified components, we also manufacture guide elements, spyholes, anchors and many more products in accordance with customer requirements - ranging from small laboratory equipment to large industrial units.
Do you have a new idea but conventional materials and composites cannot meet your requirements? FRIATEC is ready to help you implement your project. Whether you are a start-up, medium-sized business or group: we are pleased to provide knowledge and extensive experience.

FRIATEC AG stands for decades of experience in ceramic manufacturing, a wide variety of joining methods, extensive knowledge in process and product development as well as for products “made in Germany”. Our research department comprises a team of interdisciplinary experts specialising in material research, process development and product innovation.

Our ceramic materials are subject to regular inspections and controls to meet highest quality requirements. We are currently developing innovative high-performance materials that exhibit excellent properties in applications up to 2,300°C.

Is the solution you are seeking for an application requiring resistance to high temperatures and corrosive conditions? Please discuss your ideas with us.

We cooperate with you and develop new concepts to obtain customised products that are technically and economically optimised.

Our principal objectives in process development are to implement stable processes and modern machinery. We are also determined to achieve continuous improvements and ensure that you consider us an attractive partner for your projects.
Innovative engineering for customised products
The purity of raw materials and careful manufacture are parameters that lift material properties to FRIATEC level. The chemical stability of grain boundary phases determines the chemical strength of polycrystalline structures. Surprisingly, the smallest amount of by-products has a decisive effect on corrosion in naturally minimal grain boundaries. Adding SiO$_2$ seems to be economically attractive to improve sintering activity and reduce the required firing temperature. However, FRIATEC follows a different strategy and focuses on the consequent improvement of corrosion resistance.

Careful selection of raw materials and constant controls reduce the harmful SiO$_2$ content without compromise.

The chemical composition of inevitable by-products in high-purity alumina is a decisive factor for corrosion resistance, making this remarkable observation easy to understand: Materials with the same purity such as 99.7% Al$_2$O$_3$ display very different corrosive properties depending on the manufacturer; the composition of the by-product is crucial.

Corrosion resistance is often an involuntary but crucial factor when it comes to the race for quality, productivity and, of course, profitability. FRIATEC is continually optimising the corrosion resistance of its alumina materials to maintain and further develop their recognised superior quality.
Outstanding corrosion resistance

DEGUSSIT AL23 sample after the corrosion test described below. The absence of methylene blue staining indicates that sulphuric acid did not corrode the microstructure.

Comparative sample of a 99.7% Al₂O₃ ceramic; the cross-section clearly shows corrosive attacks of the microstructure.

This comparative sample (99.7% Al₂O₃) also shows noticeable weakening of the microstructure caused by sulphuric acid.

DETERMINING CORROSION RESISTANCE

Consistent material development with respect to corrosion resistance is accompanied by sophisticated testing methods. FRIATEC carries out corrosion tests, followed by colour infiltration controls to obtain essential information. A material sample is exposed to boiling sulphuric acid for several days. After submerging the sample in a bath of methylene blue solution, the cross section clearly shows advanced leaching of grain boundaries.

The figures above show the comparative test result of DEGUSSIT AL23 and two other 99.7% alumina ceramic samples under identical conditions. The reproducible test using standard methods allows the depth of colour infiltration to be measured and product batches to be compared with other materials. FRIATEC uses sound property controls to maintain established quality levels.
TECHNOLOGY
HIGH-TEMPERATURE STRENGTH

Technical processes at the highest temperature levels impose extreme requirements on units and plants, materials and technical personnel. FRIATEC is committed to providing economical high-temperature solutions and manages temperatures up to 1,700°C or even 1,950°C safely. Fully developed products enable FRIALIT-DEGUSSIT materials to maintain their top-level market position.

Elevated temperatures generally contribute to a drop in mechanical strength and shape stability. High-purity ceramics from various sources show significantly different behaviours when exposed to high temperatures.

The dreaded creep deformation at extremely high temperatures (1,700°C) has been compared experimentally. Our materials show an excellent result: The comparative test was carried out using bars cut from different alumina ceramics. The bars had identical dimensions and were exposed to temperature stress at 1,700°C.

Although each sample has >99.5% Al₂O₃, the degree of deformation is very different under constant thermal stress.

Optimised DEGUSSIT AL23 and DEGUSSIT AL24 alumina ceramics are characterised by exceptional dimensional stability under the most demanding thermal stresses.
DEGUSSIT materials exhibit highest shape stability under constant temperature stress.
<table>
<thead>
<tr>
<th>Properties</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main components</td>
<td>-</td>
</tr>
<tr>
<td>Purity</td>
<td>wt-%</td>
</tr>
<tr>
<td>Density</td>
<td>g/cm³</td>
</tr>
<tr>
<td>Open Porosity</td>
<td>vol.-%</td>
</tr>
<tr>
<td>Average size of crystallites</td>
<td>μm</td>
</tr>
<tr>
<td>Bending strength σ_m</td>
<td>DIN EN 843-1</td>
</tr>
<tr>
<td>Weibulls modulus</td>
<td>-</td>
</tr>
<tr>
<td>Toughness K_{Ic}</td>
<td>SEVNB</td>
</tr>
<tr>
<td>Compressive strength</td>
<td>MPa</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>static</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>GPa</td>
</tr>
<tr>
<td>Hardness</td>
<td>Knoop, 100 g</td>
</tr>
<tr>
<td>Maximum service temperature in air</td>
<td>°C</td>
</tr>
<tr>
<td>Linear coefficient of expansion</td>
<td>10^6/K</td>
</tr>
<tr>
<td>Specific heat</td>
<td>J/(kg*K)</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>W/(M*K)</td>
</tr>
<tr>
<td>Resistivity</td>
<td>Ω*cm</td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>kV/mm</td>
</tr>
<tr>
<td>Typical colour</td>
<td>-</td>
</tr>
</tbody>
</table>

The data indicated on this table are in line with the introductory German Industrial Standard DIN 40680 and relate to test specimens from which they were obtained. They are not unconditionally applicable to other forms of the same material. The data must be regarded as indicative only. All data refer to a temperature of 20°C, unless otherwise specified.

To find information about characteristic values of other materials, please go to www.friatec.com/ceramics.
<table>
<thead>
<tr>
<th>Material</th>
<th>DEGUSSIT AL23</th>
<th>Material</th>
<th>DEGUSSIT AL24</th>
<th>Material</th>
<th>DEGUSSIT AL25</th>
<th>Material</th>
<th>FRIALIT FZT</th>
<th>Material</th>
<th>DEGUSSIT FZY</th>
</tr>
</thead>
<tbody>
<tr>
<td>α - Al_2O_3</td>
<td>α - Al_2O_3</td>
<td>α - Al_2O_3</td>
<td>α - Al_2O_3, ZrO_2</td>
<td>ZrO_2, Y_2O_3, Al_2O_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 99.5</td>
<td>> 99.5</td>
<td>> 99.5</td>
<td>> 99.5</td>
<td>> 99.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.70 - 3.95</td>
<td>> 3.4</td>
<td>> 2.8</td>
<td>\geq 4.05</td>
<td>\geq 5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>\leq 5</td>
<td>20 - 30</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>70</td>
<td>5</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 - 350</td>
<td>150</td>
<td>70</td>
<td>460</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>> 15</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.3</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,500</td>
<td>1,000</td>
<td>300</td>
<td>3,000</td>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>-</td>
<td>-</td>
<td>360</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.22</td>
<td>-</td>
<td>-</td>
<td>0.24</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,950</td>
<td>1,950</td>
<td>1,950</td>
<td>1,700</td>
<td>1,700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.9</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.5</td>
<td>10.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.3</td>
<td>10.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>-</td>
<td>-</td>
<td>850</td>
<td>400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.9</td>
<td>27.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>5.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10^{10}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4×10^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 - 30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ivory</td>
<td>creme white</td>
<td>white</td>
<td>white</td>
<td>white</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FRIALIT®-DEGUSSIT®
HIGH-PERFORMANCE CERAMICS
CERAMIC INNOVATIONS SINCE 1863

ELECTRICAL ENGINEERING

HIGH-TEMPERATURE TECHNOLOGY

MECHANICAL ENGINEERING

SURFACE FINISHING

01. UHV vacuum chamber
02. Special insulation tube for physical research institutes
03. Feedthroughs with ISO-KF flange
04. High-voltage feedthrough
05. Rectangular tubes
06. Multi-bore tubes
07. Crucibles, boats and annealing boxes
08. Plates with hole
09. Forming tools used in body construction
10. Dosing unit used in the pharmaceutical and cosmetic industry
11. Spacer cans for the pump industry
12. Welding pins used in body construction
13. Midget file
14. Grinding tools used in metal processing
15. Mounted points used in metal processing
16. Grinding wheel for the glass-processing industry
FRIATEC AG specialises in the manufacture of products made of corrosion and wear-resistant materials.

INNOVATION FOR MORE THAN 150 YEARS

Founded as a brickyard in Mannheim, Germany in 1863, the company developed its first groundbreaking innovation in 1888 with the production of chemical stoneware. Numerous new developments followed, including the processing of plastics in the middle of the last century and the production of chemical devices and systems combining modern materials with traditional ones. The following years were characterised by the expansion in the main business area and the development of more and more new business fields. Starting as Deutsche Steinzeug and later as Friedrichsfeld GmbH, since 1993, the company has been operating under the name FRIATEC AG and has developed into an international diversified company.

SPECTRUM OF SOPHISTICATED SOLUTIONS

Today FRIATEC AG offers a spectrum of innovative solutions for many branches, e.g. joining technology for pipe systems and ceramic components for use in laboratory and electrical engineering as well as in medical technology.

With its sophisticated solutions, FRIATEC AG ranks not only as one of the most well-known and well-established companies in the Rhine-Neckar metropolitan area but is also an industry leader on the world market.

PARTNER OF A STRONG COMMUNITY

Since 2003, FRIATEC AG belongs to the ALIAXIS group of companies which has its headquarters in Brussels, Belgium. ALIAXIS is the world’s largest manufacturer of plastic fluid handling systems for the construction industry, industrial companies and public utility companies.

FRIATEC AG specialises in the manufacture of products made of corrosion and wear-resistant materials.